Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 8, 2026
-
null (Ed.)Many companies provide neural network prediction services to users for a wide range of applications. However, current prediction systems compromise one party's privacy: either the user has to send sensitive inputs to the service provider for classification, or the service provider must store its proprietary neural networks on the user's device. The former harms the personal privacy of the user, while the latter reveals the service provider's proprietary model. We design, implement, and evaluate Delphi, a secure prediction system that allows two parties to execute neural network inference without revealing either party's data. Delphi approaches the problem by simultaneously co-designing cryptography and machine learning. We first design a hybrid cryptographic protocol that improves upon the communication and computation costs over prior work. Second, we develop a planner that automatically generates neural network architecture configurations that navigate the performance-accuracy trade-offs of our hybrid protocol. Together, these techniques allow us to achieve a 22x improvement in online prediction latency compared to the state-of-the-art prior work.more » « less
-
Ledger-based systems that support rich applications often suffer from two limitations. First, validating a transaction requires re-executing the state transition that it attests to. Second, transactions not only reveal which application had a state transition but also reveal the application's internal state. We design, implement, and evaluate ZEXE, a ledger-based system where users can execute offline computations and subsequently produce transactions, attesting to the correctness of these computations, that satisfy two main properties. First, transactions hide all information about the offline computations. Second, transactions can be validated in constant time by anyone, regardless of the offline computation. The core of ZEXE is a construction for a new cryptographic primitive that we introduce, decentralized private computation (DPC) schemes. In order to achieve an efficient implementation of our construction, we leverage tools in the area of cryptographic proofs, including succinct zero knowledge proofs and recursive proof composition. Overall, transactions in ZEXE are 968 bytes regardless of the offline computation, and generating them takes less than a minute plus a time that grows with the offline computation. We demonstrate how to use ZEXE to realize privacy-preserving analogues of popular applications: private decentralized exchanges for user-defined fungible assets and regulation-friendly private stablecoins.more » « less
An official website of the United States government

Full Text Available